Pumps & Systems
August, 2009
As the global demand for energy grows, power companies are working to implement new technologies that would enable them to produce more power from existing stations. The following example demonstrates how International Power’s Hazelwood power station in Australia improved the efficiency of their motor-driven boiler feed pumps to produce a higher megawatt output without burning additional fossil fuels.
The Growing Demand for Energy
Built between 1964 and 1971, the Hazelwood Power Station in Victoria’s Latrobe Valley originally planned to have six units producing 200 MW each. However, growing electricity demand in the late 60s prompted the approval of a proposal to add two units to the station to increase generating capacity. The eight-unit power station was producing 1,600 MW output by the early 70s; each unit generated 200 MW of power. In recent years, this power station has moved to improve its output through thermal efficiency gains and increasing each unit’s capacity by 20 MW.
Engineered Modifications to Improve Pump Efficiency
Having modified the turbines to use less power, the plant needed to upgrade the 11-stage ring section, boiler feed pumps to meet the newly elevated performance requirements. International Power Hazelwood (IPRH) contacted a pump aftermarket service center in the Latrobe Valley to determine if modifications could be made to seven of these pumps within a two-year time period.
Though the original pump curves implied that the pump would have sufficient head and flow to handle the increased service conditions, several factors were discovered during inspection that would determine the course of action. Due to a vane pass vibration, the diffuser vanes had been machined to correct a vane pass issue that the pump experienced early on in its life. As a result, the hydraulic performance of the diffuser was compromised, and the pump no longer matched the manufacturer’s original design. The motor size also limited the power usage.
Rotor Centralization was performed to improve pump efficiency