Hydro Inc. is Carving out their Niche in the Global Pump Aftermarket

Written by: Sarah Schroer
Publisher: Pump Engineer / June 2015

 

Pump Engineer spoke with George Harris, Hydro Inc.’s CEO and Founder, to learn more about what sets them apart from other pump aftermarket services. “Hydro has developed a unique niche where we have the capabilities, the engineering support, and the lab for testing purposes to provide comprehensive support for customers, while providing prompt capable service on a global basis,” says Harris. Hydro Inc. makes customers the cornerstone of their business. “Everything that we do is focused on the needs of the customer,” explains Brian Scorer who is the Executive VP at Hydro Inc. “We make sure we are entrepreneurial, fl exible, agile, and very quick in the way that we go about our business. We provide world class quality, world class delivery, and we wish to be competitive on cost. The foundation for what we do is built upon engineering excellence and technology. We also have some of the world’s best pump engineers.”

 

screen-shot-2016-09-15-at-4-05-34-pm

Werner Barnard and Dr. Gary Dyson of Hydro, Inc.

Continue reading

diagram, engineering drawing

Setting the New Pump Testing Standard

The pump industry faces a challenge in keeping up with changing efficiency regulations. Programs such as the Hydraulic Institute (HI) Pump Test Lab Approval (PTLA) are helping companies adhere to these standards. Here, we see how Hydro, Inc. made history with the first HI PTLA certification.

Written by: Michelle Segrest
Publisher: World Pumps / June 2016

 

With an engineering first approach, Chicago’s Hydro, Inc., proves the impact of redesigned and engineered pumps by testing their real-time hydraulic and mechanical performance at its state-of-the-art Test Lab. It is in the 46,000-square-foot- facility that Hydro develops and implements engineering modifications for improving the performance of critical pumps and then verifies that performance in the lab.

Thanks to high-quality capabilities in testing vertical, horizontal, and submersible pumps, Hydro made history in September 2015 by becoming the first recipient of full certification of the new Hydraulic Institute Pump Test Lab Approval program.

This new industry standard is designed to assist pump OEMs and other pump test laboratories to improve their current laboratory procedures and policies by working with a third-party auditor to develop and maintain accurate, uniform and repeatable pump testing protocols. The program also helps participating organizations adhere to the requirements of the international test laboratory accreditation standard (ISO 17025) concerning test measurement equipment.

“Hydro’s test lab is unique because it was designed to support the aftermarket by having the flexibility to test a wide range and variety of custom engineered pumps,” said George Harris, Hydro CEO and Founder. “Since it is not incorporated in a plant which manufactures new pump production, as is the case with many large OEMs, it is possible to test a customer’s pump in 1-to-3 weeks lead time. This is very important because customers who need a certified test, need the pump tested quickly.”

Since it opened in 2010, Hydro’s 5,000-Horsepower Test Lab has helped to troubleshoot problems with pumps in the field by isolating the pump from its system in a controlled environment to simulate field conditions in a safe manner.

“Hydro remains independent of the constraints that can be imposed by relying on existing hydraulic designs and manufacturers’ predicted performance curves,” said Jeff Johnson, Vice President, Hydro, Inc., a 41-year industry veteran who was instrumental in the design and construction of Hydro’s Test Lab. “All of these efforts ultimately lead to a more reliable and well understood pump performance.”

fig-258

Single-stage horizontal split case (BB1) pump test with customer motor – test loop.

Continue reading

Shortcuts Can Lead to Disastrous Outcomes

Design flaws cause catastrophic failure in a geothermal power station hotwell in New Zealand.

Written by: Chandra Verma (Hydro, Inc.)
Publisher: Pumps & Systems / August 2016

 

Despite well-documented pump system standards and basic requirements, omission of certain crucial design steps remains a problem in the industry, often causing disastrous outcomes for the end user. When suppliers, manufacturers and/or contractors take shortcuts, technical and commercial risk can present serious ramifications for a large project.Communication failures between the end user’s staff, suppliers and contractors can intensify problems, especially when pumps that may not be appropriate for a given job are commissioned and put into service. Without the end user’s knowledge, a facility may install pumps that have not been properly tested for the application, were fabricated to inferior standards or subject to other shortcuts that adversely affect performance.Sometimes the end user becomes aware of shortcut-derived flaws during the commissioning stage. Other times, problems in equipment or system design might not be evident immediately—they surface during subsequent plant and equipment maintenance that reveals potentially dangerous, hidden conditions. The ensuing problems can lead to tense project politics and expensive rectification, including hiring independent consultants.

Suppliers, manufacturers and contractors take shortcuts for various reasons. These shortcuts can be attributed to a lack of experience with how a pump might be deployed in the field. There may be miscommunication of technical details from both the user and supplier or between the user and contractor.

Budget constraints and concerns can also result in omissions; commercial reality can cause a manufacturer or supplier to make a project’s bottom line cheaper by reducing the cost of equipment and cutting corners.

fig-5d-aandb-velocity-dist

Figure 1. The velocity distribution of the original (left) and modified geometries (right)

Continue reading

How Root-Cause Analysis Solved a Vertical Turbine Pump Failure

A comprehensive approach to reverse engineering helped to establish the differences between the stainless steel and original bronze impellers.

Written by:  Hydro, Inc.
Publisher: Pumps & Systems / March 2016

 

When a severe pump failure involving one of three installed circulating water makeup pumps happened, facility personnel grew concerned about the root cause. The subject pump failed just 40 days after its commissioning.
3-b-page-1-fig-a-right

Image 1. A crack in the discharge head flange that involved fatigue failure of the weld of a pump.

7-d-page-1-fig-b

Image 2 (right). The pump’s impeller wear ring landing shows heavy scoring.

The equipment in question consisted of three-stage vertical turbine pumps running either in standalone or in parallel operation as required. The failure manifested itself through high vibration and caused severe scoring of the pump shaft and wear ring landings, leading to fatigue failure of the weld on the discharge head flange (see Images 1 and 2). The commissioned pump was refurbished and rebuilt by another company’s service center with spare impellers supplied by an original equipment manufacturer. No changes to the geometry had reportedly been made, although the impeller material had been upgraded from bronze to stainless steel.

The plant initiated its internal root-cause analysis process, and the failed pump required emergency repair. The station sought a company to conduct the repair, and the firm reviewed the customer-supplied documents and background providing the possible causes of the failure. Continue reading

Advanced Engineering Boosts Reliability in Boiler Feed Pump

This approach incorporated reverse engineering, design verification and casting simulation to address equipment failure.

Written by: Dr. Gary Dyson and Jesse Stinson (Hydro, Inc.)
Publisher: Pumps & Systems / December 2015

 

Pump technology requires the extensive use of castings to form the complex shapes needed to guide process fluids through the machine. The shape of these passages is crucial to the machine’s performance.

Pump designers spend extensive time designing and optimizing the shapes of these passages to optimize the machine’s efficiency. Unfortunately, casting processes cannot always represent the pump engineer’s true design intent, and the manufacturing processes have a direct impact on the machine’s reliability and design integrity. Designers take these processes into account when proposing their designs, but sometimes the deficiencies of the casting process become apparent after a major equipment failure.

One example involved determining the root cause behind the first-stage failure of a Worthington 12-WCND-166 six-stage boiler feed pump. The pump exhibited high vibration and performance degradation, and it was taken out of service. The inspection determined that a crack had resulted from a welded core plug. Continue reading