Rediscover Hydro Parts Solutions

Did you know that Hydro can provide aftermarket parts solutions for critical pump parts and rotating equipment?

Hydro Parts Solutions, a subsidiary of Hydro, Inc., offers complex solutions to obsolescence as well as difficult-to-source replacement parts.

Utilizing state-of-the-art technology, such as laser scanning and 3D printing, Hydro Parts Solutions has established itself as a proven solution that possesses both the knowledge and sophisticated casting capabilities to expedite casting projects from months to weeks.

Types of items we can cast (and more):

  • Impellers
  • Diffusers
  • Discharge Heads
  • Casing Bowls
  • Suction Bells

Hydro Parts Solutions supports emergency component replacements at an optimal time frame while reducing risk, operational downtime, and unforeseen costs.

Engineered Quality Parts – On Demand, delivering:

  • Consistent Quality
  • 3D Sand Printing
  • Computer-aided machining
  • Emergency Repair
  • Industry Standards and Design Control Processes
  • Short Turnaround
  • Catalogue Data for Future Use
  • Transparency and Communication for our Customers

Want to take a detailed look into our proven parts process? Click on the link to view our redesigned webpage: https://hydroinc.com/parts-solutions/

 

Analysis & Engineering Upgrades Solve Ring Section Pump Failure

A major power plant in the United States experienced high vibration and recirculation issues with several ring section (BB4) boiler feed pumps, resulting in multiple catastrophic failures and unplanned outages. This case study details one of the pumps that was shipped to an aftermarket pump service center for a full analysis, troubleshooting, repair plan, rebuild and performance testing.

In combined-cycle plants, the demand for robust, yet expensive, barrel pumps diminished as the industry moved toward less expensive segmental rings pumps. Due to the recent shifts in the power industry, operators often face a shorter mean time between repair (MTBR), internal wear and high vibration issues on newly installed units.

After experiencing numerous boiler feed pump performance and reliability issues at their power plant, the plant owner opted to pursue a comprehensive root cause analysis and repair plan with an aftermarket pump service center in Los Angeles, California. The investigation ultimately revealed a series of underlying issues linked to the performance problems and unexpected pump failures.

Video: https://vimeo.com/452266877

Source: https://www.pumpsandsystems.com/analysis-engineering-upgrades-solve-ring-section-pump-failure

Re-engineering System Reliability

A US fertilizer plant was experiencing recurring reliability problems with its horizontal multistage boiler feed pumps. The series of repeat failures motivated the owner plant to consult with a widely-known unbiased ­­­­aftermarket pump service provider. Previous experience with this company’s Texas facility gave the plant confidence that they had the capability to troubleshoot the problem and provide a solution. This type of supplier has been classified as a “CPRS”— Competent Pump Repair Shop, because their worldwide affiliates are staffed by specialists who have the fullest support of pump engineers at the company headquarters.

The aftermarket pump service provider performed a failure modes and effects analysis (FMEA) that took into consideration historical failure information and included an independent engineering analysis of the operating conditions. A review of the system history uncovered that the fertilizer plant had originally been designed with two 100% pumps. When the system was uprated, increased output requirements necessitated that both pumps operate in parallel to meet the new demand. Based on this information, the FMEA determined that the most probable failure mechanism was discharge recirculation caused by low flow operation.

Continue reading

Unearthing the Root Cause of Vibration Issues

recently constructed fertilizer plant was experiencing significant vibration problems on their brand new UAN Solution pumpsThis vibration forced the plant to take the equipment out of service.   

The site was unable to diagnose the root cause of this problem on their own and the unreliability and resulting unavailability of this critical equipment was causing significant stress on the new plant. They heard through another fertilizer plant that a global aftermarket pump service provider had been able to diagnose and remediate their pump problems with great success. The site reached out to this aftermarket pump service provider to help identify the issue and provide solutions.   

The pump was shipped to the aftermarket pump service provider’s Chicago repair shop to perform a thorough disassembly, cleaning, and inspection (DCI). The service provider’s engineering team reviewed the original pump design and historical vibration information provided by the plant. Between this review and the DCI results, sufficient evidence was gathered to perform a root cause analysis (RCA) that explained the aberrant behavior of the problem pumps. The pumps were then re-engineered to eliminate the diagnosed problem and provide the plant with reliable operation.   Continue reading

Full Refurbishment for Island Refinery

The process of reopening the plant had uncovered more than 500 pumps that needed considerable refurbishment and repair. The most important of these was a critical jet pump used for hydraulic decoking. It was badly damaged and sent to the original equipment manufacturer (OEM) for inspection. The OEM recommended that the refinery replace most of the pump parts, as well as a costly repair that would require 35 weeks to rebuild.

Viable alternative

Instead, the refinery sent the pump to global aftermarket pump service provider, Hydro, Inc. in Chicago, where it was refurbished for just over half the cost of the OEM proposal. The time involved was also significantly improved to just eight weeks by using a non-destructive evaluation and rebuild process at a 46,000 ft2 facility where Hydro develops and implements engineering modifications for improving the performance of critical pumps and then verifies that performance in their Hydraulic Institute certified test lab.

Significant reopening

The original refinery opened in the mid-1960s. In the early 1970s, it was re-rated at 650,000 barrels per day. It had been one of the largest refineries in the western hemisphere, so the impact of reopening the plant would be significant. In this case, Hydro was tasked to work with the critical highenergy pump to prepare for its reopening. The new owners began the process two years ago and it is expected that the plant will be open for operation in the first quarter of 2020. Once restarted, the plant will be able to process up to 210,000 barrels per day of oil, a fraction of the 1,500- acre (607-hectare) plant’s peak capacity in the 1970s of 650,000 bpd.

When the plant was shut down, the pumps and other equipment in the refinery were either left in place or went into storage where they were kept in poor condition. Time constraints prohibited proper preventative maintenance before the refinery shut down. The tropical climate is hot, salty, humid, oppressive, and several hurricanes occurred during this time. All of these extreme conditions can contribute to the deterioration of heavy rotating equipment. Over the course of the year, the temperature typically varies from 72°F to 88°F and is rarely below 68°F or above 90°F. Continue reading