Enhancing Performance Through Flow Reduction

Operating a pump off its design point has many drawbacks. Inefficiency and wasting energy across a throttled valve bothrequire more horsepower than an optimized system. Running away from the best efficiency point increases risk of degradation, which may cause recurring premature component failures due to higher radial loads, hydraulic instability, and other influences. These factors negatively affect reliability while simultaneously driving up the cost of equipment operation and maintenance. For this reason, opportunities to optimize a pump are extremely beneficial and have a very short payback period.

The benefits of modifying pump performance to better match system demand were demonstrated in a recent project undertaken at a Gulf Coast refinery. The refinery had a single-stage, double suction (BB2) pump where the required output had been greatly reduced from the original design. The mechanical seals were repeatedly failing, which resulted in frequent maintenance and seal replacements. The refinery partnered with Hydro, Inc to perform a field evaluation of the pump and develop a design upgrade to increase reliability and efficiency.

Read the full case study in World Pumps’ January/February digital edition to learn what steps were taken to effectively reduce flow for this “bad actor”, returning the asset to reliable operation and significantly reducing the cost to operate the equipment.

Do you have an initiative to save energy and reduce the lifecycle costs of your equipment? Hydro’s Energy Edge is a comprehensive program where we work hand-in-hand with end users to understand opportunities for asset optimization and develop plans to execute on chosen solutions.

Troubleshooting Boiler Feed Pump Problems in the Field

Feed pumps are an essential piece of the steam cycle and their performance directly impacts the ability of the plant to produce power. As a complex component moving high-temperature, high-pressure fluid, maintaining critical fits and tolerances during construction and refurbishment is essential. It is equally important to ensure that field assembly and installation is performed with experience and precision.

Using experienced technical field advisors  (TFAs) when performing field work is even more critical as equipment ages. During a typical lifetime, equipment will undergo multiple refurbishments that may change the dimensions of the internal element, casing, and discharge head. For BB5 pumps, commonly referred to within the industry as barrel pumps, the barrel usually remains installed in the system and is not sent out with the internal element and head for refurbishment. As the installation settles, foundation degrades, and components undergo repeated thermal expansion and contraction, this barrel can lose some of its dimensional integrity.

One of the greatest pitfalls in performing a successful field installation is blindly trusting the installation and operation manual (IOM) supplied with the equipment. While this document provides useful guidance, any component changes that have occurred, both intentional and unintentional, are not reflected here. It is also important not to presume that pumps running in parallel have identical barrels or that internal elements are interchangeable. Instead of falling victim to these assumptions, best practices include completing a field dimensional analysis.

The value of capturing and recording critical data was proven during a complex boiler feed pump project at a coal-fired power plant. This project also highlighted the importance of adaptability and being able to react quickly to changing circumstances when performing fieldwork.

Read the full case study in Pumps & Systems February 2025 digital edition.

Learn more about Hydro’s Field Service capabilities here.

Wednesday Webinar: Rolling Element Bearings

Join us for October’s webinar, where instructor Glen Powell presents a course rooted in the extensive expertise and material developed by the late Heinz Bloch, a renowned authority in machinery reliability and engineering. Bloch’s work continues to shape best practices in bearing selection, optimization, and failure prevention. This session will highlight his invaluable insights and strategies, equipping participants to improve bearing performance and confidently justify upgrades.

Register Now