How do you measure axial thrust?

Innovations in Thrust Measurement

Thrust is an important factor in vertical turbine pumps because it directly affects the performance and reliability of the pump. Excessive axial thrust can cause the motor thrust bearing to wear faster, run at a higher temperature, and/or fail if overloaded. This results in a higher total cost of ownership by reducing equipment operating life, forcing unexpected downtime, and requiring costly emergency work.

Historically, thrust has been a calculated value based on the impeller design and other pump parameters; this calculation is an approximation and has a margin of error. Axial thrust can be more accurately assessed through testing, but direct measurement of the thrust across the profile of a pump performance curve is not typically performed by OEMs.

In support of a customers’ request to better understand the repeated failure of a vertical turbine pump, Hydro’s Test Lab and S. Himmelstein and company developed a thrustmeter that provides users with an accurate and reliable measurement of thrust across the tested performance curve. This measurement was not only more accurate than the calculated thrust values, it provided insight beyond a single operating point.

By monitoring critical pump and motor data, the end user was empowered to make the best possible decision for their equipment and plant.

Read more about this innovation in our joint white paper, published with Pumps & Systems magazine.

Learn more about how Hydro’s Certified Performance Test Lab and how Hydro can support you in better understanding and optimizing the performance of your equipment.

System Optimization

Boost Energy Efficiency and Accelerate Savings

It’s estimated that 85% of pumps are not optimized to their systems, costing end users both efficiency and reliability. To achieve operational excellence and reduce environmental impact, assessing and improving our systems is essential.

There is a lot of focus on buying new equipment with a higher energy efficiency rating. In reality, the efficiency gains available in optimizing efficiency within the pump design is usually dwarfed by the energy savings available by optimizing the way the pump operates within its system. Not only does optimizing a pump to its system result in a reduction in energy usage, it allows the pump to operate at its best efficiency point (BEP), where reliability is the greatest.

With today’s technology, optimizing a pumping system is achievable with less cost and a greater return on investment. Advancements in testing capabilities and analytical modeling help us to better understand and predict how fluid moves through a system, allowing us to identify more opportunities for improvement. These technologies also eliminate the uncertainty of planned modifications by assessing their effectiveness in a virtual environment.

When optimizing a pump to its system, it’s important to have a holistic mindset- looking beyond the pump boundaries, considering both mechanical and hydraulic performance, and understanding that system operation is affected as much by the people who operate it as it is the physical system itself. What tools are useful to have in your toolbox when approaching a system optimization project?

Continue reading

Energy Savings Audits- Understanding your Savings Potential

Many pump users focus on efficiency ratings when purchasing new equipment, but a much greater source of wasted energy is found when looking at the overall system instead of limiting optimization to the pump design itself. It is rare that a system is operating with equipment that is optimized to deliver flow while operating close to its best efficiency point. More often, pumps are oversized for their systems and achieve the desired flow rate by throttling a valve. The friction added by this valve changes the system curve to achieve the design operating flow; this action is one of the greatest sources of wasted energy in a pump system. Continue reading

Analysis & Engineering Upgrades Solve Ring Section Pump Failure

A major power plant in the United States experienced high vibration and recirculation issues with several ring section (BB4) boiler feed pumps, resulting in multiple catastrophic failures and unplanned outages. This case study details one of the pumps that was shipped to an aftermarket pump service center for a full analysis, troubleshooting, repair plan, rebuild and performance testing.

In combined-cycle plants, the demand for robust, yet expensive, barrel pumps diminished as the industry moved toward less expensive segmental rings pumps. Due to the recent shifts in the power industry, operators often face a shorter mean time between repair (MTBR), internal wear and high vibration issues on newly installed units.

After experiencing numerous boiler feed pump performance and reliability issues at their power plant, the plant owner opted to pursue a comprehensive root cause analysis and repair plan with an aftermarket pump service center in Los Angeles, California. The investigation ultimately revealed a series of underlying issues linked to the performance problems and unexpected pump failures.

Video: https://vimeo.com/452266877

Source: https://www.pumpsandsystems.com/analysis-engineering-upgrades-solve-ring-section-pump-failure