Capability Spotlight: Resolve Reliability Problems

Why look backwards when you can be looking forward?

The problems you inherited with your pump and system design shouldn’t be an anchor holding you back from stable operation. Hydro’s mission to increase pump reliability extends beyond our service facilities and into the field. Hydro Reliability Services provides expert troubleshooting, advanced engineering analysis, and field mechanical and hydraulic testing for your rotating equipment.

Many pump applications experience ongoing vibration and reliability issues; aging installations are also seeing margins between operation and resonant conditions eroding and previously reliable equipment being pulled into problems. The root cause of these problems is often resonance, a condition that is often misdiagnosed and commonly goes undiagnosed, resulting in persistent high amplitude vibration issues for long periods of time. Structural resonance typically results in highly directional vibration and increased amplitudes that can be difficult to resolve without the proper engineering approach. Fortunately, technology has developed to diagnose resonance and develop effective solutions without resorting to costly trial-and-error methods.

To help our customers solve complex problems with critical pumping equipment, Hydro Reliability Services’ engineers bring an array of technology to the site. Monitoring of traditional health indicators – flow, power, vibration, and pressure – is supplemented with advanced technology, such as Operating Deflection Shape and Experimental Modal Analysis. Leveraging their expertise and advanced modeling software, Hydro’s reliability engineers analyze this data to determine design and system weaknesses and propose improvements. This assessment gives you the ammunition you need to make an informed judgment about the risk of current and future operation.

Read our recent case study in Pumps & Systems magazine to learn more about how field testing and troubleshooting helped a power plant resolve a vibration issue in a critical application.

What does more effective troubleshooting mean for you?

  • Maintaining a competitive edge in your marketplace through reduced operation and maintenance costs
  • Creating a safer workplace with much lower risk of equipment-related accidents and reduced exposure to hazardous materials
  • Contribution towards a sustainable future through more efficient operation and reduced risk of product leakage into the environment
  • Ability to focus resources on proactive strategies and process innovation instead of continuously reacting to problem equipment

White Paper: Performance Prediction for the Aftermarket

Pumps are often expected to run at low flows and on many occasions can spend their entire operating lives there. It is important to understand the complex behavior of fluid and how that affects performance and reliability so that modifications can be made to achieve optimal performance in these challenging conditions.

By combining reverse engineered data, analytical tools and engineering expertise, a comprehensive approach can be developed to understand and modify hydraulic performance. This process allows pumping equipment to function exactly as required by the system that it fits within.

Download our latest white paper published with Pumps & Systems magazine to read Dr. Gary Dyson’s discussion of how low flow affects performance and what can be done to optimize operation and reliability.

Learn more about Hydro’s engineering services.

Webchat: Drowning in Data? Learn to Swim in the Digital Age

On June 4, 2024, Hydro’s Centaur team joined Chemical Processing for a webchat to talk about navigating the challenges of adopting new digital technologies.

The digital transformation presents both opportunities and challenges. As continuous monitoring becomes more ubiquitous, we are collecting exponentially greater amounts of data than ever before. At the same time, our industries are losing experience and facing reductions in manpower.

It’s natural to think that digital technologies could fill that gap, but many are realizing that without a thoughtful implementation strategy more data doesn’t always translate into greater reliability. During this webchat, we explored how to successfully implement condition monitoring technology to harness the power of data and drive effective decision making.

Some of the main discussion points included:

  • What are the first steps for a successful digital implementation strategy?
  • Quality vs quantity: How do we ensure that the data collected is meaningful and useful?
  • What resources are needed to analyze and act on information?

You can watch the full webchat here.

Chemical Processing Webchat with Hydro from Hydro, Inc. on Vimeo.

To learn more about Hydro’s Centaur condition monitoring, visit our Centaur webpage or contact us with questions.

We understand that hands-on experience is important in making an investment in a new technology, and provide end users with “test drives” of our monitoring solution through a commitment-free 90-day free trial. Interested in trying it out yourself? Apply here.

Capability Spotlight: Optimize Energy Efficiency

It’s estimated that 85% of pumps are not optimized to their systems, costing end users both efficiency and reliability. To achieve operational excellence and reduce environmental impact, assessing and improving our systems is essential.

Many OEMs focus on the initial pump design and providing a higher peak efficiency. While this can provide energy savings, it misses some of the greatest gains available. With our history in developing solutions for the aftermarket, Hydro approaches energy efficiency differently. Our unique experience as a brand-agnostic company focused on end users’ existing installed equipment has provided us with insight into improving equipment performance by understanding how it operates as a part of the greater system. This has allowed us to provide significant energy savings for our partners, as shown in successful cases such as this case study published in World Pumps magazine.

Hydro’s Energy Edge program takes advantage of our in-house engineering, field testing, remanufacturing, and parts capabilities to provide an end-to-end solution to improve energy usage and reliability. The process starts with getting the necessary design and operation data to perform a comprehensive analysis of current performance and identify opportunities for improvement. Depending on the findings, solutions can range from system operations recommendations to hydraulic modifications to a completely redesigned drop-in replacement. By providing a custom solution instead of an off-the-shelf replacement, Hydro not only optimizes performance, but minimizes cost, lead time, and risk by ensuring that the solutions fits into the existing equipment footprint.

Some of the aspects of an energy optimization project may include:

  • Energy Savings Audit: Field performance testing provides a performance baseline and identifies areas where improvements can be made
  • System Analysis: Using system design experience and AFT Fathom hydraulic analysis software, Hydro’s engineers model and simulate fluid flow through the system to accurately predict system behavior and optimize performance.
  • Hydraulic Modification: Modification to existing hydraulic components or design of new components provides hydraulic performance optimized to meet system needs. Our hydraulic specialists use both design knowledge and CFD analysis to provide the best fit design for the application
  • Equipment Remanufacturing and Parts Supply: Modifications are implemented through Hydro’s service center network, ensuring oversight and communication with the engineering design team. New cast parts are provided by our Parts Solutions division, ensuring control over parts quality and lead time.
  • Performance Testing: Testing in our HI-certified performance test lab validates new hydraulics and provides a new certified performance curve. Post-modification field testing can also be performed to provide data on field performance.
  • Continuous Monitoring: Using Hydro’s Centaur condition monitoring solution, equipment mechanical performance can be continuously monitored to provide better insight into equipment health into the future.

Want to learn more about energy efficiency and pump performance? Watch Bob Jennings’ presentation on the subject during Empowering Pumps 2024 Maintenance and Reliability Summit or read our co-authored eBook with Plant Services magazine.

Byron Jackson Process Water Pump Improvements

Application: Pond Process Water
Pump Details: Byron Jackson 32KXL
Pump Type: Multi-Stage Vertical

Industrial pumps are sometimes repaired or modified by smaller local repair shops that do not have the engineering oversight to ensure that the repairs and modifications meet the original design’s intent. When Hydro received this pump, it was clear that prior modifications that had been performed without engineering review were causing problems.

This pump had been “upgraded” by replacing the upper bearing with an enclosure tube, which was not part of the original design. The lack of that bearing contributed to the instability of the top shaft and may have lead to the pump’s failure.

After fully reverse engineering the pump, Hydro redesigned the existing enclosure tube to incorporate the missing upper bearing. The modification involved machining the enclosure tube into two pieces and joining them together with a coupling and adding a bushing to stabilize the shaft.

Because the spare parts provided were of an older design and no longer fit the pump, Hydro manufactured several parts. These included a new transition piece, diffusers, a new bearing, and suction bell. Moreover, the impeller vane tips were weld-repaired and re-machined, and the impellers were then balanced to 4 W/N. The pump, which was rebuilt to standard specifications and reconstructed using a durable stainless steel, was returned to service successfully.

Learn more about Hydro’s targeted upgrades for the pulp and paper industry here.

Lear more about Hydro’s Scotford service center, the service center that spearheaded this project, here.