State of the Pump Industry 2006

Author:

George Harris, President, Hydro Inc.

Publisher:

Pumps & Systems

Date Published:

January, 2006

 

Critical Issues in the Global Pump Industry

Certainly the cost and availability of certain raw materials and energy has been an issue during the past year, and with continued strong demand in China, this may continued to be a concern in the future.

Looking to the longer term, improving the energy efficiency of pumps and pumping systems is critical, as is greater emphasis on understanding and more effectively controlling life cycle costs.

The high demand for raw materials has pushed costs up and impacted pricing. But perhaps more critical are the extended delivery times, especially for engineered product manufactured in North America.

The reduction in foundry capacity in North America over the past two decades limits our options to obtain quick turnaround on castings for engineered products. While technology has greatly enhanced the design and tooling process, it is likely that the turnaround time for castings on engineered product will continue to be a concern.

While the long-term outlook for energy costs may be more favorable, short-term costs are projected to remain high.

According to statistics published by the Hydraulic Institute and others, pumps and pumping systems consume an astonishing 20 percent of the world’s energy! There is a great opportunity for the pump industry to become a leader in energy conservation efforts and the Hydraulic Institute is to be applauded for its initiatives in promoting energy awareness and energy savings to the pump industry, and to pump users as a whole.

 

Continue reading

Technologies and Practices to Solve Chronic Problems

 

A nuclear power plant case study…

Nuclear plants need to function effectively and have reliable systems. The equipment and manpower that keep the equipment functioning is crucial not only to the continued ability to provide power services, but to the safety of all of us. All nuclear power plants are required to maintain and regularly test their pumps to ensure operability in the case of a nuclear event or emergency. If they didn’t, the potential outcomes could range anywhere from the inability to produce electric energy to the occurrence of a catastrophic nuclear incident, potentially affecting many thousands of people. Simply put, nuclear power plants cannot afford to have malfunctioning equipment.

An auxiliary feedwater (AFW) system is one of the important features of a pressurized water reactor (PWR) nuclear power plant. This system serves two functions:

  1. During normal startup and shutdown operations, the AFW system provides a reliable source of water for cooling the plant steam generators.
  2. Following a reactor trip, the AFW system will provide an emergency source of cooling water to the steam generators in order to remove the heat generated by the decay of fission products in the nuclear fuel.

Both of these functions are crucial, and the pump must be at peak performance in either case.

The Problem

A nuclear utility was experiencing repetitive maintenance and operational issues on its AFW pumps, reducing both system and unit availability. The issues included high thrust-bearing temperatures, black oil or oil discoloration and vibration amplitudes exceeding acceptable limits for operability. These pumps were Ingersoll-Rand Model HMTA, 10 Stage, Horizontal split case designs. The utility had worked over a period of several years to resolve the reliability issues with no success. Continue reading