Challenging MTBF Expectations

Improving Maintenance Intervals in Demanding Applications

Some services are inherently difficult due to factors such as fluid quality or multiple disparate operating points.  These factors are an inherent part of the process and cannot be changed to improve reliability. Harsh applications can be a costly prospect, both in overhaul costs and in the time and labor required for frequent servicing. Many times we become caught in the perception that there is no improvement to be had for these services. A short mean-time-between-failures (MTBF) becomes routine and expected, and maintenance activities and parts procurement are built around this expectation.  

It’s important that processes are built around historical run times to anticipate needs in the short term. However, it is equally important to take a step back and ask– “is this maintenance interval really acceptable or is there something that I can do to improve it?” An end user in the Canadian oil sands industry decided to take on that challenge when faced with a problematic bitumen froth transfer pump. This end user partnered with Hydro’s Scotford facility in Alberta to develop a series of upgrades that improved operating life while simultaneously reducing the cost of repair. 

Read the full case study in World Pumps July/August 2023 edition.

Learn more about our Hydro Scotford service center.

System Optimization

Boost Energy Efficiency and Accelerate Savings

It’s estimated that 85% of pumps are not optimized to their systems, costing end users both efficiency and reliability. To achieve operational excellence and reduce environmental impact, assessing and improving our systems is essential.

There is a lot of focus on buying new equipment with a higher energy efficiency rating. In reality, the efficiency gains available in optimizing efficiency within the pump design is usually dwarfed by the energy savings available by optimizing the way the pump operates within its system. Not only does optimizing a pump to its system result in a reduction in energy usage, it allows the pump to operate at its best efficiency point (BEP), where reliability is the greatest.

With today’s technology, optimizing a pumping system is achievable with less cost and a greater return on investment. Advancements in testing capabilities and analytical modeling help us to better understand and predict how fluid moves through a system, allowing us to identify more opportunities for improvement. These technologies also eliminate the uncertainty of planned modifications by assessing their effectiveness in a virtual environment.

When optimizing a pump to its system, it’s important to have a holistic mindset- looking beyond the pump boundaries, considering both mechanical and hydraulic performance, and understanding that system operation is affected as much by the people who operate it as it is the physical system itself. What tools are useful to have in your toolbox when approaching a system optimization project?

Continue reading

Increasing MTBR Under Emergency Conditions

increasing mtbr under emergency conidtionsAs the nuclear industry continues to adapt to new requirements under the Nuclear Promise, it is of key importance for utilities to strengthen existing safety protocols and execute efficiency improvements in day-to-day operations and maintenance to optimize overall costs.

One such nuclear plant found themselves  struggling in regards to a planned outage of a vertical service water pump, providing cooling water to safety-related heat exchangers in the power generation process. In this case, the operating pump was actively exhibiting performance issues and was reaching the end of its lifecycle, requiring their reserve unit be placed into service under expedited conditions.

The principle goal for the plant was increasing Mean Time Before Repair (MTBR) of their pump system to optimize efficiency and reduce costs. Unfortunately, upon initial review of the reserve unit, it was identified that it had a history of poor performance issues under previous use.

Authored by Faisal Salman.
Source: nuclearplantjournal.com