Join Our Lecture | 2025 Turbo Pump Symposia

Hydro is proud to be presenting again at the 2025 Turbo Pump Symposia in Houston, TX! Join presenters Dr. Gary Dyson and Freddy Cardenas Linero as they discuss a case study where advanced engineering was used to dramatically increase flow of a shipping pump in an oil and gas terminal facility.

Wednesday, September 17, 2025 | 2:00 – 2:45pm | Room 370A

Centrifugal pumps are critical to fluid handling systems, but as operational demands evolve, optimizing performance becomes essential. This lecture will present a successful hydraulic re-rate of a propane shipping pump (P-1010) at Phoenix Park Gas Processors’ Hull facility in Texas, aiming to double railcar loading capacity without major system modifications. Instead of replacing the pump, a process requiring over 40 weeks of lead time and costly infrastructure changes, the project used a duplicate unit sourced from the aftermarket. It was reverse engineered, hydraulically redesigned, and optimized using CFD simulations to shift the Best Efficiency Point from 350 GPM to 800 GPM while reducing head by 60%.

The study highlights the importance of combining CFD analysis with mechanical evaluation to ensure reliable performance. It outlines a structured methodology from feasibility assessment to installation, including modeling, manufacturing, quality control, and commissioning. This project demonstrates how a targeted hydraulic re-rate can extend equipment life, increase throughput, and reduce energy use and capital costs, all while maintaining existing mechanical and system constraints.

Find out more about this year’s Turbo Pump Symposia here.

Learn more about Hydro’s Engineering Services.

 

Empowering Pumps Sustainability Summit

Hydro was proud to participate in this year’s Empowering Pumps virtual Sustainability Summit. This year’s summit explored the vital intersection of environmental responsibility and industrial innovation in the pump and equipment industry.

The summit featured prominent voices including Hydro’s Dr. Gary Dyson, who champions innovative pump design and modification. Gary was joined by Tomas Dobrovolskis of Hidrostal North America, recognized for groundbreaking sustainable equipment solutions and Todd Bush of Decarbonfuse, a leader in industrial decarbonization strategies.

The discussion, led by Empowering Pumps & Equipment President, Vince Marino, shared perspectives on a more sustainable future in industrial operations, highlighting how companies are transforming their approaches to sustainability through cutting-edge product design, sophisticated manufacturing processes, and purposeful operational improvements.

You can watch this year’s summit here:

Learn more about Empowering Pumps and Equipment here.

Read more about Hydro’s commitment to sustainability and how we help end users achieve energy savings through Hydro Energy Edge.

Enhancing Performance Through Flow Reduction

Operating a pump off its design point has many drawbacks. Inefficiency and wasting energy across a throttled valve bothrequire more horsepower than an optimized system. Running away from the best efficiency point increases risk of degradation, which may cause recurring premature component failures due to higher radial loads, hydraulic instability, and other influences. These factors negatively affect reliability while simultaneously driving up the cost of equipment operation and maintenance. For this reason, opportunities to optimize a pump are extremely beneficial and have a very short payback period.

The benefits of modifying pump performance to better match system demand were demonstrated in a recent project undertaken at a Gulf Coast refinery. The refinery had a single-stage, double suction (BB2) pump where the required output had been greatly reduced from the original design. The mechanical seals were repeatedly failing, which resulted in frequent maintenance and seal replacements. The refinery partnered with Hydro, Inc to perform a field evaluation of the pump and develop a design upgrade to increase reliability and efficiency.

Read the full case study in World Pumps’ January/February digital edition to learn what steps were taken to effectively reduce flow for this “bad actor”, returning the asset to reliable operation and significantly reducing the cost to operate the equipment.

Do you have an initiative to save energy and reduce the lifecycle costs of your equipment? Hydro’s Energy Edge is a comprehensive program where we work hand-in-hand with end users to understand opportunities for asset optimization and develop plans to execute on chosen solutions.

Capability Spotlight: Optimize Energy Efficiency

It’s estimated that 85% of pumps are not optimized to their systems, costing end users both efficiency and reliability. To achieve operational excellence and reduce environmental impact, assessing and improving our systems is essential.

Many OEMs focus on the initial pump design and providing a higher peak efficiency. While this can provide energy savings, it misses some of the greatest gains available. With our history in developing solutions for the aftermarket, Hydro approaches energy efficiency differently. Our unique experience as a brand-agnostic company focused on end users’ existing installed equipment has provided us with insight into improving equipment performance by understanding how it operates as a part of the greater system. This has allowed us to provide significant energy savings for our partners, as shown in successful cases such as this case study published in World Pumps magazine.

Hydro’s Energy Edge program takes advantage of our in-house engineering, field testing, remanufacturing, and parts capabilities to provide an end-to-end solution to improve energy usage and reliability. The process starts with getting the necessary design and operation data to perform a comprehensive analysis of current performance and identify opportunities for improvement. Depending on the findings, solutions can range from system operations recommendations to hydraulic modifications to a completely redesigned drop-in replacement. By providing a custom solution instead of an off-the-shelf replacement, Hydro not only optimizes performance, but minimizes cost, lead time, and risk by ensuring that the solutions fits into the existing equipment footprint.

Some of the aspects of an energy optimization project may include:

  • Energy Savings Audit: Field performance testing provides a performance baseline and identifies areas where improvements can be made
  • System Analysis: Using system design experience and AFT Fathom hydraulic analysis software, Hydro’s engineers model and simulate fluid flow through the system to accurately predict system behavior and optimize performance.
  • Hydraulic Modification: Modification to existing hydraulic components or design of new components provides hydraulic performance optimized to meet system needs. Our hydraulic specialists use both design knowledge and CFD analysis to provide the best fit design for the application
  • Equipment Remanufacturing and Parts Supply: Modifications are implemented through Hydro’s service center network, ensuring oversight and communication with the engineering design team. New cast parts are provided by our Parts Solutions division, ensuring control over parts quality and lead time.
  • Performance Testing: Testing in our HI-certified performance test lab validates new hydraulics and provides a new certified performance curve. Post-modification field testing can also be performed to provide data on field performance.
  • Continuous Monitoring: Using Hydro’s Centaur condition monitoring solution, equipment mechanical performance can be continuously monitored to provide better insight into equipment health into the future.

Want to learn more about energy efficiency and pump performance? Watch Bob Jennings’ presentation on the subject during Empowering Pumps 2024 Maintenance and Reliability Summit or read our co-authored eBook with Plant Services magazine.