To better serve pump users in the power generation, oil and gas, industrial, and municipal markets, Hydro Scotford (a subsidiary of Hydro Inc., a Chicago-based corporation), announced its move to a newly constructed facility in the Canadian province of Alberta. This modern 40,000 sq. ft. facility houses state-of-the-art equipment which Hydro Scotford uses for pump design, engineering, and manufacturing – providing pump users with customized and innovative solutions to their pump problems. Continue reading
Tag Archives: pumps
Hydraulic Institute: Pumping System Optimization Training
• The benefits of improving the performance of pumping systems;
• System optimization and basic pump system interaction;
• How to screen pumping systems for good system improvement candidates;
• How to identify and implement basic performance improvement opportunities;
• Basic life cycle cost analysis; and How to plan and propose an Action Plan to management.
Visit http://www.hydroinc.com/pump-training-seminars for information on upcoming pump training events
Upgrades Maximize Efficiency of 82-Year-Old Pump
Positioned on the shores of Lake Michigan are two stations that contain cooling water pumps which feed cooling water to BP’s Whiting Refinery. The #1 water station contains four IR 24 HV pumps, which are large, single-stage, double-suction, horizontal split case pumps. Four pumps in station #1 (P-11, P-12, P-13, and P-14 in the photo below) are unique in that they were designed with a bottom-suction configuration.
The rotating equipment engineers at the refinery wanted to better understand the operating characteristics of these pumps, which were originally built by Cameron in 1928. Because these pumps were installed so long ago, there was no NPSH data available and the pumps’ best efficiency point was not known.
BP’s rotating equipment engineers contacted Hydro, a reliable pump service provider with whom they had a long and positive relationship. Their initial inquiry for a pump performance test led to a review of the pumps’ operating environment. Hydro’s engineers learned that one pump was a designated spare and three of the four pumps were being run at a much lower capacity. Block valves had been used to limit the discharge pressure for the three operating pumps in an effort to prevent leaks in the cooling water piping inside the refinery.
Hydro’s engineers agreed with the refinery’s rotating equipment engineers that it would be beneficial to obtain the pumps’ best efficiency point. Running the pumps too far back on their operating curves could create internal forces that would be harmful to the pumps and decrease their operating life. For this reason, the refinery decided to pull one of the bottom-suction pumps from service to be tested. However, before sending this pump to Hydro’s independent test lab in Chicago, they seized the opportunity to make modifications that would enable the vintage pump to meet current standards.
The pump was promptly sent to Hydro and a comprehensive engineering analysis was performed. Hydro’s engineers communicated with the refinery’s rotating equipment engineers to determine the modifications and upgrades that could be made.