Modifying Existing Equipment to Maintain Operational Standards

Many aging manufacturing facilities have witnessed changes in market demand that have altered their product slate and capacity. These changing system demands often cause equipment that was previously well-sized for the application to run significantly away from the operating range where peak efficiency and reliability are achieved. Running in this mode drives up the life cycle cost of equipment due to short maintenance cycles and wasted energy. In cases where reliability is severely compromised, equipment operating costs can also be accompanied by risk to production due to mid-cycle failures and unavailability of equipment.

To maintain safe, reliable and cost-effective operation, it is important to ensure pump systems are optimized. When approached with the need to optimize a pump system, many end users will look to purchase new equipment for the changed demand. This can be a costly and time-intensive endeavor, as new equipment installation is often accompanied by baseplate and piping modifications that require the system to be taken offline. In contrast, modifying the existing equipment to meet the new system needs provides a custom solution that maintains the original footprint, can be completed on a more aggressive timeline and often provides a more custom fit to the system.

The decision to perform one such modification was made by a major Gulf Coast oil refinery that was running at a significantly lower flow than the original system demand. The site reliability team worked with Hydro to design and implement an extreme downrating of the existing equipment. The result was an optimized system that improved reliability of not only the pump, but other affected system components. 

Read our latest case study published with Pumps & Systems magazine where Hydro’s Sergio Ramos outlines how the process for this downrate and what the final outcome was for the end user.

Learn more about Hydro’s engineering services.

White Paper: Performance Prediction for the Aftermarket

Pumps are often expected to run at low flows and on many occasions can spend their entire operating lives there. It is important to understand the complex behavior of fluid and how that affects performance and reliability so that modifications can be made to achieve optimal performance in these challenging conditions.

By combining reverse engineered data, analytical tools and engineering expertise, a comprehensive approach can be developed to understand and modify hydraulic performance. This process allows pumping equipment to function exactly as required by the system that it fits within.

Download our latest white paper published with Pumps & Systems magazine to read Dr. Gary Dyson’s discussion of how low flow affects performance and what can be done to optimize operation and reliability.

Learn more about Hydro’s engineering services.

Hydraulic Rerate Proven in Performance Test Lab

Custom Hydraulics for the Midstream Market

This summer, Hydro completed a hydraulic rerate project for a major US midstream pipeline. The project was completed through Hydro South, Hydro’s southeastern US service center in Alpharetta, Georgia. The project was completed with testing support from the Hydro Performance Test Lab, Hydro’s 5000 HP test facility located in Chicago, IL, with engineering direction from Hydro Global Engineering, based in Manchester, UK.

The pipeline originally used two booster pumps and the use of a Drag Reducing Agent (DRA) to achieve the desired flow rate. To increase the overall flow capacity of the line and remove the need for the DRA, the end user specified a pump to be added to the system downstream of the booster pumps.

The pump performance specifications were developed by system engineers and communicated to Hydro. The pump’s original design condition was modified to provide the necessary differential pressure required for the desired flow rate – for today and in the future. This will be achieved without the use of DRA or with little added to the system.

Hydro modified an existing pump casing provided by the pipeline and designed new impellers to meet the specific hydraulic performance requirements. Using computational fluid dynamics and advanced modeling, the new impellers were manufactured and installed by Hydro, then sent to Hydro’s test facility for hydraulic performance testing.

To provide an exact performance match, a larger impeller diameter size was selected for the first test and subsequently trimmed to meet performance within API 610 tolerances. Along with the hydraulic performance test, the mechanical integrity of the pump was measured with a vibration test, mechanical resonance test, and a bearing housing temperature stabilization test. All this information validates the quality of the rebuild and ensures a reliable machine.

The pipeline has a limited ‘budget’ of DRA concentration allowed pipeline wide. This concentration is measured in part per million (ppm). By adding the hydraulically rerated pump to the branch line, the DRA ppm budget can be allocated elsewhere in the pipeline. This will add efficiency and increase overall throughput.

Hydro is very fortunate to support critical industries like midstream pipelines in ensuring safe, reliable, and cost-effective pumps and rotating equipment.

Learn more about Hydro’s Performance Test Lab and Engineering Services

Phase Measurements Used to Diagnose Compressor Misalignment

Hydro’s condition monitoring solution, Centaur, is currently being used to monitor rotating machinery at a Gulf Coast terminal facility. Through Hydro’s Centaur system, real-time vibration amplitude levels and temperature levels are collected and stored at several measurement locations on compressors and their drive trains. Analysts at Hydro’s Monitoring and Diagnostic Center help to evaluate the collected data. They use their subject matter expertise to make recommendations to the end user when they identify actions that could minimize downtime and maximize the lifespan of the monitored machinery. Continue reading