Case Study- Solving Vibration Issues in Vertical Pumps

Vertical pumps are especially susceptible to minor conditions that can result in elevated vibration amplitudes. The vertically suspended design and long stationary element lengths often combine into natural frequencies that are near forcing frequencies, such as running speed or even sub-synchronous faults. The complexity of these issues makes it difficult to diagnose and resolve persistent vibration issues with the type of data that is routinely available to the end users.

In-depth field testing paired with computational analysis provides a clear path to both an accurate diagnosis and a solution that has a high likelihood of success. The effectiveness of this methodology was proven for a Gulf Coast midstream company who was experiencing high vibration with their vertical freshwater pumps. By applying advanced field diagnostics, the end user was able to understand the underlying causes of the vibration and evaluate possible solutions in a theoretical environment prior to implementing them in the field.

Read the full case study, published in the May 2025 edition of Pumps & Systems magazine, here.

Read more case studies on vibration analysis and the work completed by Hydro Reliability Services here.

Enhancing Performance Through Flow Reduction

Operating a pump off its design point has many drawbacks. Inefficiency and wasting energy across a throttled valve bothrequire more horsepower than an optimized system. Running away from the best efficiency point increases risk of degradation, which may cause recurring premature component failures due to higher radial loads, hydraulic instability, and other influences. These factors negatively affect reliability while simultaneously driving up the cost of equipment operation and maintenance. For this reason, opportunities to optimize a pump are extremely beneficial and have a very short payback period.

The benefits of modifying pump performance to better match system demand were demonstrated in a recent project undertaken at a Gulf Coast refinery. The refinery had a single-stage, double suction (BB2) pump where the required output had been greatly reduced from the original design. The mechanical seals were repeatedly failing, which resulted in frequent maintenance and seal replacements. The refinery partnered with Hydro, Inc to perform a field evaluation of the pump and develop a design upgrade to increase reliability and efficiency.

Read the full case study in World Pumps’ January/February digital edition to learn what steps were taken to effectively reduce flow for this “bad actor”, returning the asset to reliable operation and significantly reducing the cost to operate the equipment.

Do you have an initiative to save energy and reduce the lifecycle costs of your equipment? Hydro’s Energy Edge is a comprehensive program where we work hand-in-hand with end users to understand opportunities for asset optimization and develop plans to execute on chosen solutions.

Hydro Middle East performs swift re-build on fire-damaged circulating pumps

Hydro Middle East, specialists in pump rebuilding, particularly in the oil and gas industry and other industrial markets was called in to assess the damage and redesign and rebuild the fire-damaged pumps. Hydro’s engineers first evaluate the causes of any pump damage or failure and then provide expert engineering analysis and a responsive field service.

Written by: Thomas Arakal (Hydro Middle East)
Published by: World Pumps

Two fire damaged pumps

Two fire damaged pumps arrive at the Hydro Middle East Service Centre.

Analysis & recommendations

In the case of the fire-damaged pumps, once the fire was under control, Hydro immediately sent a field engineer to the site to conduct a root cause analysis and make recommendations to ensure that the equipment would be restored within the very fast turnaround that the company required.

The engineers discovered that the fire had been so severe it had completely burned out all of the oil in the bearing housing. In addition, the baseplate was also warped because of the excessive heat. A turnaround of between two and three weeks for redesign and rebuild was proposed, subject to mechanical seal availability and the two hot oil circulating pumps, along with the baseplate and the motors were shipped to Hydro Middle East’s facility in Dubai, U.A.E.

Continue reading