Capability Spotlight: Resolve Reliability Problems

Why look backwards when you can be looking forward?

The problems you inherited with your pump and system design shouldn’t be an anchor holding you back from stable operation. Hydro’s mission to increase pump reliability extends beyond our service facilities and into the field. Hydro Reliability Services provides expert troubleshooting, advanced engineering analysis, and field mechanical and hydraulic testing for your rotating equipment.

Many pump applications experience ongoing vibration and reliability issues; aging installations are also seeing margins between operation and resonant conditions eroding and previously reliable equipment being pulled into problems. The root cause of these problems is often resonance, a condition that is often misdiagnosed and commonly goes undiagnosed, resulting in persistent high amplitude vibration issues for long periods of time. Structural resonance typically results in highly directional vibration and increased amplitudes that can be difficult to resolve without the proper engineering approach. Fortunately, technology has developed to diagnose resonance and develop effective solutions without resorting to costly trial-and-error methods.

To help our customers solve complex problems with critical pumping equipment, Hydro Reliability Services’ engineers bring an array of technology to the site. Monitoring of traditional health indicators – flow, power, vibration, and pressure – is supplemented with advanced technology, such as Operating Deflection Shape and Experimental Modal Analysis. Leveraging their expertise and advanced modeling software, Hydro’s reliability engineers analyze this data to determine design and system weaknesses and propose improvements. This assessment gives you the ammunition you need to make an informed judgment about the risk of current and future operation.

Read our recent case study in Pumps & Systems magazine to learn more about how field testing and troubleshooting helped a power plant resolve a vibration issue in a critical application.

What does more effective troubleshooting mean for you?

  • Maintaining a competitive edge in your marketplace through reduced operation and maintenance costs
  • Creating a safer workplace with much lower risk of equipment-related accidents and reduced exposure to hazardous materials
  • Contribution towards a sustainable future through more efficient operation and reduced risk of product leakage into the environment
  • Ability to focus resources on proactive strategies and process innovation instead of continuously reacting to problem equipment

Webchat: Drowning in Data? Learn to Swim in the Digital Age

On June 4, 2024, Hydro’s Centaur team joined Chemical Processing for a webchat to talk about navigating the challenges of adopting new digital technologies.

The digital transformation presents both opportunities and challenges. As continuous monitoring becomes more ubiquitous, we are collecting exponentially greater amounts of data than ever before. At the same time, our industries are losing experience and facing reductions in manpower.

It’s natural to think that digital technologies could fill that gap, but many are realizing that without a thoughtful implementation strategy more data doesn’t always translate into greater reliability. During this webchat, we explored how to successfully implement condition monitoring technology to harness the power of data and drive effective decision making.

Some of the main discussion points included:

  • What are the first steps for a successful digital implementation strategy?
  • Quality vs quantity: How do we ensure that the data collected is meaningful and useful?
  • What resources are needed to analyze and act on information?

You can watch the full webchat here.

Chemical Processing Webchat with Hydro from Hydro, Inc. on Vimeo.

To learn more about Hydro’s Centaur condition monitoring, visit our Centaur webpage or contact us with questions.

We understand that hands-on experience is important in making an investment in a new technology, and provide end users with “test drives” of our monitoring solution through a commitment-free 90-day free trial. Interested in trying it out yourself? Apply here.

Capability Spotlight: Optimize Energy Efficiency

It’s estimated that 85% of pumps are not optimized to their systems, costing end users both efficiency and reliability. To achieve operational excellence and reduce environmental impact, assessing and improving our systems is essential.

Many OEMs focus on the initial pump design and providing a higher peak efficiency. While this can provide energy savings, it misses some of the greatest gains available. With our history in developing solutions for the aftermarket, Hydro approaches energy efficiency differently. Our unique experience as a brand-agnostic company focused on end users’ existing installed equipment has provided us with insight into improving equipment performance by understanding how it operates as a part of the greater system. This has allowed us to provide significant energy savings for our partners, as shown in successful cases such as this case study published in World Pumps magazine.

Hydro’s Energy Edge program takes advantage of our in-house engineering, field testing, remanufacturing, and parts capabilities to provide an end-to-end solution to improve energy usage and reliability. The process starts with getting the necessary design and operation data to perform a comprehensive analysis of current performance and identify opportunities for improvement. Depending on the findings, solutions can range from system operations recommendations to hydraulic modifications to a completely redesigned drop-in replacement. By providing a custom solution instead of an off-the-shelf replacement, Hydro not only optimizes performance, but minimizes cost, lead time, and risk by ensuring that the solutions fits into the existing equipment footprint.

Some of the aspects of an energy optimization project may include:

  • Energy Savings Audit: Field performance testing provides a performance baseline and identifies areas where improvements can be made
  • System Analysis: Using system design experience and AFT Fathom hydraulic analysis software, Hydro’s engineers model and simulate fluid flow through the system to accurately predict system behavior and optimize performance.
  • Hydraulic Modification: Modification to existing hydraulic components or design of new components provides hydraulic performance optimized to meet system needs. Our hydraulic specialists use both design knowledge and CFD analysis to provide the best fit design for the application
  • Equipment Remanufacturing and Parts Supply: Modifications are implemented through Hydro’s service center network, ensuring oversight and communication with the engineering design team. New cast parts are provided by our Parts Solutions division, ensuring control over parts quality and lead time.
  • Performance Testing: Testing in our HI-certified performance test lab validates new hydraulics and provides a new certified performance curve. Post-modification field testing can also be performed to provide data on field performance.
  • Continuous Monitoring: Using Hydro’s Centaur condition monitoring solution, equipment mechanical performance can be continuously monitored to provide better insight into equipment health into the future.

Want to learn more about energy efficiency and pump performance? Watch Bob Jennings’ presentation on the subject during Empowering Pumps 2024 Maintenance and Reliability Summit or read our co-authored eBook with Plant Services magazine.

Capability Spotlight: Adopt a Higher Standard

Improving performance and life isn’t always about making big changes to design and operation. Small improvements to the standards and processes that are used during refurbishment and assembly can result in outsized benefits.

Hydro specifies machining and fit-up tolerances that often exceed the required industry standards and are best-in-class for the pump industry. Taking the extra time to meet more stringent tolerances ensures better concentricity and parallelism of critical components, reducing the risk of contact between the rotating and stationary elements during operation. Reducing component contact will result in reduced vibration and reduce the rate of wear for close clearance components. Maintaining design clearances greatly contributes to longer mean-time-between-repairs by providing greater stiffness and damping to the rotating assembly and reducing internal recirculation, which in turn affects performance and efficiency. To learn more about the importance of maintaining design clearances, read our Hydro Learning Hub white paper on the subject.

Another improvement that is standard at Hydro for repairs of multistage barrel (BB5) pumps is a dimensional analysis to identify relative centerlines of all impellers to their respective diffusers. This process and the resulting actions to ensure centerline compatibility at each stage are essential in prolonging equipment life and counteracting latent failure mechanisms.

By adhering to stricter tolerances, requiring robust process documentation, and never cutting corners, Hydro’s rebuild process results in greater reliability and increased mean-time-between-repairs. This level of quality ensures a safer work environment for our end user customers, reduces waste by decreasing the frequency of maintenance cycles, and lowers overall cost of ownership.

Learn more about the importance of axial centerline compatibility in multi-stage pumps in this case study.

Find your local Hydro Service Center and ensure high quality equipment rebuilds.

Capability Spotlight: High Capacity Pumps

From lifting massive weights, to reverse engineering components with expansive surface areas, to troubleshooting vibration in machines susceptible to resonance problems, large vertical pumps have unique challenges. Fortunately, Hydro has cultivated specialized capabilities to meet these challenges.

The first challenge is gathering dimensional data and providing reliable, quality parts supply. Large pumps are expensive to ship off-site and often run without a spare. Being able to capture precision measurements of critical parts on-site reduces both cost and risk. Hydro’s reverse engineering team is experienced in how to efficiently and accurately reverse engineer large components.

The field portion of the reverse engineering process for a large part can usually be accomplished in less than a day. After the measurements are taken, the pump can be returned to service while the model is completed and the part is manufactured.

Taking the initial component data is only the first step in Hydro’s reverse engineering process. Using their experience in the failure modes and upgrades of large pump designs, the reverse engineering team will recommend component upgrades or improved metallurgy to extend the life of the part. Where appropriate, they will also identify methods of refurbishment that can return a large part to reliable service in place of supplying a new component.

Another challenge when working on large pumps is that they require a shop with the appropriate tooling and lifting capacity. It also requires a team dedicated to providing a higher standard of repair. Because vertical pumps are made of several stacked components, maintaining tight tolerances and best-in-class fit-ups is critical for reliable operation. Hydro’s standards are more stringent than those required by any industry body. This translates to longer life, better performance, and safer operation.

Take a tour of Hydro’s Hydro East facility in the Philadelphia metro area, who have a special focus on large vertical pumps.

Introducing: Hydro East from Hydro, Inc. on Vimeo.

 

Learn more about our capabilities that support high capacity vertical pumps or contact us for more information.